A Study on the Underwater Energy Harvester with Two PVDFs Installed on the FTEH and CTEH at the End of the Support
In this study, two thin rectangular PVDFs were installed in the form of a cantilever on a FTEH (funnel-type energy harvester), and a CTEH (cymbal-type energy harvester) was fabricated in a form coupled to the upper part of the support. As a result of measuring the energy harvesting sensitivity accor...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-01, Vol.23 (2), p.808 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, two thin rectangular PVDFs were installed in the form of a cantilever on a FTEH (funnel-type energy harvester), and a CTEH (cymbal-type energy harvester) was fabricated in a form coupled to the upper part of the support. As a result of measuring the energy harvesting sensitivity according to the installation direction of the CTEH, a high voltage was measured in the structure installed on top of the support across all flow velocity conditions. A composite structure PVDF energy harvester combining CTEH and FTEH was fabricated and the amount of power generated was measured. As a result of measuring the open-circuit voltage of the PVDF energy harvester device with a composite structure to which the optimum resistance of CTEH of 241 kΩ and the optimum resistance of FTEH of 1474 kΩ were applied at a flow rate of 0.25 m/s, the output voltage compared to the RMS average value was 7 to 8.5 times higher for FTEH than for CTEH. When the flow rate was 0.5 m/s, the electrical energy charged for 500 s was measured as 2.0 μWs to 2.5 μWs, and when the flow speed was 0.75 m/s, it reached 2.5 μWs when charged for 300 s, generating the same amount when the flow rate increased by 50%. The time to do it was reduced by 66.7%. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23020808 |