Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes

RNA plays key regulatory roles in diverse cellular processes, where its functionality often derives from folding into and converting between structures. Many RNAs further rely on co-existence of alternative structures, which govern their response to cellular signals. However, characterizing heteroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-02, Vol.9 (1), p.606-13, Article 606
Hauptverfasser: Li, Hua, Aviran, Sharon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA plays key regulatory roles in diverse cellular processes, where its functionality often derives from folding into and converting between structures. Many RNAs further rely on co-existence of alternative structures, which govern their response to cellular signals. However, characterizing heterogeneous landscapes is difficult, both experimentally and computationally. Recently, structure profiling experiments have emerged as powerful and affordable structure characterization methods, which improve computational structure prediction. To date, efforts have centered on predicting one optimal structure, with much less progress made on multiple-structure prediction. Here, we report a probabilistic modeling approach that predicts a parsimonious set of co-existing structures and estimates their abundances from structure profiling data. We demonstrate robust landscape reconstruction and quantitative insights into structural dynamics by analyzing numerous data sets. This work establishes a framework for data-directed characterization of structure landscapes to aid experimentalists in performing structure-function studies. Different experimental and computational approaches can be used to study RNA structures. Here, the authors present a computational method for data-directed reconstruction of complex RNA structure landscapes, which predicts a parsimonious set of co-existing structures and estimates their abundances from structure profiling data.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-02923-8