Analytical Problems with Preparation of Paraspinal Tissues from Patients with Spinal Fusion for Analysis of Titanium
Preparation of paraspinal tissue of patients with implants for elemental analysis is a challenge because it contains titanium in the ionic form, as well as metallic debris. Most literature reports focus on dissolving the tissue, but the impact of digestion conditions on metallic debris of Ti has not...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2021-04, Vol.26 (8), p.2120 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Preparation of paraspinal tissue of patients with implants for elemental analysis is a challenge because it contains titanium in the ionic form, as well as metallic debris. Most literature reports focus on dissolving the tissue, but the impact of digestion conditions on metallic debris of Ti has not been investigated. In our work, various digestion conditions, including systems, compositions of oxidising mixture, and time, were tested aiming (i) to digest the tissue without digestion of metallic titanium to quantify soluble Ti and (ii) to digest metallic titanium debris to asses total Ti content in tissue. The experiments were performed in a closed mode using a microwave-assisted system and a carbon heating block. Our study revealed that total digestion of titanium was impossible in the tested conditions and the maximal level of digested titanium was below 70%. The mineralisation with the use of concentrated nitric acid was optimal to prepare paraspinal samples to analyse the soluble titanium form because metallic titanium passivated and did not migrate to the solution. The elaborated conditions were applied to determine titanium ion in the periimplant tissue of patients with three different titanium-based surgical systems, including traditional growing rod (TGR), guided growth systems (GGS), and vertical expandable prosthesis titanium rib (VEPTR). |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26082120 |