Modular Multilevel Converter for Photovoltaic Application with High Energy Yield under Uneven Irradiance
The direct integration of Photovoltaic (PV) to the three-phase Modular Multilevel Converter (MMC) without dc–dc converters results in high-efficiency PV power plant with increased energy yield. The arm power control method for the MMC further improves the extraction of available power under uneven i...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2020-05, Vol.13 (10), p.2619 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The direct integration of Photovoltaic (PV) to the three-phase Modular Multilevel Converter (MMC) without dc–dc converters results in high-efficiency PV power plant with increased energy yield. The arm power control method for the MMC further improves the extraction of available power under uneven irradiance across different phases of the MMC. However, the uneven irradiance between the sub-modules results in residual voltage that results in harmonics and unbalance components. In this paper, the effect of uneven irradiance across the sub-module of the MMC is investigated with arm power control method. A modified balancing algorithm for the arm power control of the MMC is proposed which enables balanced power to be injected into ac grid despite uneven irradiance across the sub-modules in the MMC. The modified balancing algorithm enables to keep the unbalance in the phase currents below 10% and the Total Harmonic Distortion (THD) is confined as per IEEE 519 standard. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13102619 |