Propofol enhances stem-like properties of glioma via GABAAR‐dependent Src modulation of ZDHHC5-EZH2 palmitoylation mechanism
Background Propofol is a commonly used anesthetic. However, its effects on glioma growth and recurrence remain largely unknown. Methods The effect of propofol on glioma growth was demonstrated by a series of in vitro and in vivo experiments (spheroidal formation assay, western blotting, and xenograf...
Gespeichert in:
Veröffentlicht in: | Stem cell research & therapy 2022-08, Vol.13 (1), p.1-398, Article 398 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Propofol is a commonly used anesthetic. However, its effects on glioma growth and recurrence remain largely unknown. Methods The effect of propofol on glioma growth was demonstrated by a series of in vitro and in vivo experiments (spheroidal formation assay, western blotting, and xenograft model). The acyl-biotin exchange method and liquid chromatography-mass spectrometry assays identified palmitoylation proteins mediated by the domain containing the Asp-His-His-Cys family. Western blotting, co-immunoprecipitation, quantitative real-time polymerase chain reaction, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays were used to explore the mechanisms of the γ-aminobutyric acid receptor (GABAAR)/Src/ZDHHC5/EZH2 signaling axis in the effects of propofol on glioma stem cells (GSCs). Results We found that treatment with a standard dose of propofol promoted glioma growth in nude mice compared with control or low-dose propofol. Propofol-treated GSCs also led to larger tumor growth in nude mice than did vector-treated tumors. Mechanistically, propofol enhances the stem-like properties of gliomas through GABAAR to increase Src expression, thereby enhancing the palmitoylation of ZDHHC5-mediated EZH2 and Oct4 expression. Conclusion These results demonstrate that propofol may promote glioma growth through the GABAAR-Src-ZDHHC5-EZH2 mechanism and are helpful in guiding the clinical use of propofol to obtain a better patient prognosis after the surgical resection of tumors. |
---|---|
ISSN: | 1757-6512 1757-6512 |
DOI: | 10.1186/s13287-022-03087-5 |