Short Cantilever Rock Beam Structure and Mechanism of Gob-Side Entry Retaining Roof in Reuse Period

In the reuse stage of a gob-side entry retaining, failure of the structure and stability of the main roof have a significant effect on the safety of the advanced support and ventilation space at the working face. In this study, field investigation, theoretical analysis, and industrial experimentatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2020, Vol.2020 (2020), p.1-14
Hauptverfasser: Cheng, Yongzhen, Yin, Wei, Zhang, Chunlei, Chen, Jiarui, Dong, Yun, Wu, Jingke, Zhang, JiHua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the reuse stage of a gob-side entry retaining, failure of the structure and stability of the main roof have a significant effect on the safety of the advanced support and ventilation space at the working face. In this study, field investigation, theoretical analysis, and industrial experimentation were performed to analyse the fracture characteristics and formation process of the gob-side entry retaining roof during the reuse period. A dynamic-equilibrium mechanical model of the main roof structure is presented and the formation mechanisms of different types of short cantilever rock beam structures are clarified. The following major conclusions are drawn: (1) Three types of short cantilever rock beam structures occur in the main roof of a gob-side entry retaining during the reuse period, namely, the “short cantilever-articulated rock beam” structure, “short cantilever step rock beam (type I)” structure, and “short cantilever step rock beam (type II)” structure. (2) The stability criterion for these three short cantilever rock beam structures was also determined; that is, when the sliding instability coefficient K ≥ 1, the short cantilever-articulated rock beam structure will form, and when the sliding instability coefficient K 
ISSN:1070-9622
1875-9203
DOI:10.1155/2020/8835820