Side-Scan Sonar Image Augmentation Method Based on CC-WGAN
The utilization of deep learning algorithms for side-scan sonar target detection is impeded by the restricted quantity and representativeness of side-scan sonar (SSS) samples. To address this issue, this paper proposes a method for image augmentation using a CC-WGAN network. First, the generator inc...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-09, Vol.14 (17), p.8031 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The utilization of deep learning algorithms for side-scan sonar target detection is impeded by the restricted quantity and representativeness of side-scan sonar (SSS) samples. To address this issue, this paper proposes a method for image augmentation using a CC-WGAN network. First, the generator incorporates the Convolutional Block Attention Module (CBAM) to enhance the assimilation of global information and local features in the input images. This integration also improves stability and avoids mode collapse problems associated with the original Generative Adversarial Network. Subsequently, the CBAM is incorporated into the discriminator to facilitate a better understanding of the relevance and significance of input data, thereby enhancing the model’s generalization ability. Finally, based on this model, existing few-sample SSS images are augmented, and we utilize the augmented images for discrimination and detection with YOLOv5. The experimental results show that following training with the SSS dataset that is augmented by this network, the accuracy of target detection increased by 7.6%, validating the feasibility of our proposed method. This method presents a novel solution to the problem of low model accuracy in underwater target detection with side-scan sonar due to limited samples. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14178031 |