A note on p(x)-harmonic maps
This article is concerned with L^{p(x)} estimates of the gradient of p(x)-harmonic maps. It is known that p(x)-harmonic maps are the weak solutions of a system with natural growth conditions, but it is difficult to use the classical elliptic techniques to find gradient estimates. In this article, we...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2013-11, Vol.2013 (263), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article is concerned with L^{p(x)} estimates of the gradient of p(x)-harmonic maps. It is known that p(x)-harmonic maps are the weak solutions of a system with natural growth conditions, but it is difficult to use the classical elliptic techniques to find gradient estimates. In this article, we use the monotone inequality to show that the minimum p(x)-energy can be expressed by the L^{p(x)} norm of a gradient of a function Phi, which is a weak solution of a single equation. |
---|---|
ISSN: | 1072-6691 |