Non-Destructive Detection of Pesticide-Treated Baby Leaf Lettuce During Production and Post-Harvest Storage Using Visible and Near-Infrared Spectroscopy

The market demand for baby leaf lettuce is constantly increasing, while safety has become one of the most important traits in determining consumer preference driven by human health hazards concerns. In this study, the performance of visible and near-infrared (vis/NIR) spectroscopy was tested in disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-11, Vol.24 (23), p.7547
Hauptverfasser: Kasampalis, Dimitrios S, Tsouvaltzis, Pavlos I, Siomos, Anastasios S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The market demand for baby leaf lettuce is constantly increasing, while safety has become one of the most important traits in determining consumer preference driven by human health hazards concerns. In this study, the performance of visible and near-infrared (vis/NIR) spectroscopy was tested in discriminating pesticide-free against pesticide-treated lettuce plants. Two commercial fungicides (mancozeb and fosetyl-al) and two insecticides (deltamethrin and imidacloprid) were applied as spray solutions at the recommended rates on baby leaf lettuce plants. Untreated-control plants were sprayed with water. Reflectance data in the wavelength range 400-2500 nm were captured on leaf samples until harvest on the 10th day upon pesticide application, as well as after 4 and 8 days during post-harvest storage at 5 °C. In addition, biochemical components in leaf tissue were also determined during storage, such as antioxidant enzymes' activities (peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), along with malondialdehyde [MDA] and hydrogen peroxide [H O ] content. Partial least square discriminant analysis (PLSDA) combined with feature-selection techniques was implemented, in order to classify baby lettuce tissue into pesticide-free or pesticide-treated ones. The genetic algorithm (GA) and the variable importance in projection (VIP) scores identified eleven distinct regions and nine specific wavelengths that exhibited the most significant effect in the detection models, with most of them in the near-infrared region of the electromagnetic spectrum. According to the results, the classification accuracy of discriminating pesticide-treated against non-treated lettuce leaves ranged from 94% to 99% in both pre-harvest and post-harvest periods. Although there were no significant differences in enzyme activities or H O , the MDA content in pesticide-treated tissue was greater than in untreated ones, implying that the chemical spray application probably induced a stress response in the plant that was disclosed with the reflected energy. In conclusion, vis/NIR spectroscopy appears as a promising, reliable, rapid, and non-destructive tool in distinguishing pesticide-free from pesticide-treated lettuce products.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24237547