How Nested Bars Enhance, Modulate, and Are Destroyed by Gas Inflows

Gas flows in the presence of two independently rotating nested bars remain not fully understood but are likely to play an important role in fueling the central black hole. We use high-resolution hydrodynamical simulations with detailed models of subgrid physics to study this problem. Our results sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-11, Vol.958 (1), p.77
Hauptverfasser: Li, Zhi, Du, Min, Debattista, Victor P., Shen, Juntai, Li, Hui, Liu, Jie, Vogelsberger, Mark, Beane, Angus, Marinacci, Federico, Sales, Laura V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gas flows in the presence of two independently rotating nested bars remain not fully understood but are likely to play an important role in fueling the central black hole. We use high-resolution hydrodynamical simulations with detailed models of subgrid physics to study this problem. Our results show that the inner bar in double-barred galaxies can help drive gas flow from the nuclear ring to the center. In contrast, gas inflow usually stalls at the nuclear ring in single-barred galaxies. The inner bar causes a quasiperiodic inflow with a frequency determined by the difference between the two bar pattern speeds. We find that the star formation rate is higher in the model with two bars than in that with one bar. The inner bar in our model gradually weakens and dissolves due to gas inflow over a few billion years. Star formation produces metal-rich/ α -poor stars, which slows the weakening of the inner bar but does not halt its eventual decay. We also present a qualitative comparison of the gas morphology and kinematics in our simulations with those of observed double-barred galaxies.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/acffb3