Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease

We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information "impressions," which allow individual cells to be associated with disease attributes like d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine 2022-02, Vol.14 (1), p.11-11, Article 11
Hauptverfasser: Johnson, Travis S, Yu, Christina Y, Huang, Zhi, Xu, Siwen, Wang, Tongxin, Dong, Chuanpeng, Shao, Wei, Zaid, Mohammad Abu, Huang, Xiaoqing, Wang, Yijie, Bartlett, Christopher, Zhang, Yan, Walker, Brian A, Liu, Yunlong, Huang, Kun, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information "impressions," which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer's disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19 myeloma cells associated with progression. Availability: https://github.com/tsteelejohnson91/DEGAS .
ISSN:1756-994X
1756-994X
DOI:10.1186/s13073-022-01012-2