A text-mining system for extracting metabolic reactions from full-text articles

Increasingly biological text mining research is focusing on the extraction of complex relationships relevant to the construction and curation of biological networks and pathways. However, one important category of pathway - metabolic pathways - has been largely neglected.Here we present a relatively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2012-07, Vol.13 (1), p.172-172, Article 172
Hauptverfasser: Czarnecki, Jan, Nobeli, Irene, Smith, Adrian M, Shepherd, Adrian J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasingly biological text mining research is focusing on the extraction of complex relationships relevant to the construction and curation of biological networks and pathways. However, one important category of pathway - metabolic pathways - has been largely neglected.Here we present a relatively simple method for extracting metabolic reaction information from free text that scores different permutations of assigned entities (enzymes and metabolites) within a given sentence based on the presence and location of stemmed keywords. This method extends an approach that has proved effective in the context of the extraction of protein-protein interactions. When evaluated on a set of manually-curated metabolic pathways using standard performance criteria, our method performs surprisingly well. Precision and recall rates are comparable to those previously achieved for the well-known protein-protein interaction extraction task. We conclude that automated metabolic pathway construction is more tractable than has often been assumed, and that (as in the case of protein-protein interaction extraction) relatively simple text-mining approaches can prove surprisingly effective. It is hoped that these results will provide an impetus to further research and act as a useful benchmark for judging the performance of more sophisticated methods that are yet to be developed.
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-13-172