Discrete-Time Pole-Region Robust Controller for Magnetic Levitation Plant
Robust pole-placement based on convex DR-regions belongs to the efficient control design techniques for real systems, providing computationally tractable pole-placement design algorithms. The problem arises in the discrete-time domain when the relative damping is prescribed since the corresponding d...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2021-01, Vol.13 (1), p.142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Robust pole-placement based on convex DR-regions belongs to the efficient control design techniques for real systems, providing computationally tractable pole-placement design algorithms. The problem arises in the discrete-time domain when the relative damping is prescribed since the corresponding discrete-time domain is non-convex, having a “cardioid” shape. In this paper, we further develop our recent results on the inner convex approximations of the cardioid, present systematical analysis of its design parameters and their influence on the corresponding closed loop performance (measured by standard integral of absolute error (IAE) and Total Variance criteria). The application of a robust controller designed with the proposed convex approximation of the discrete-time pole region is illustrated and evaluated on a real laboratory magnetic levitation plant. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13010142 |