Pt-Modified Interfacial Engineering for Enhanced Photocatalytic Performance of 3D Ordered Macroporous TiO2
Narrowing the band gap and increasing the photodegradation efficiency of TiO2-based photocatalysts are very important for their wide application in environment-related fields such as photocatalytic degradation of toxic pollutants in wastewater. Herein, a three-dimensionally ordered macroporous Pt-lo...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2022-06, Vol.12 (6), p.778 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Narrowing the band gap and increasing the photodegradation efficiency of TiO2-based photocatalysts are very important for their wide application in environment-related fields such as photocatalytic degradation of toxic pollutants in wastewater. Herein, a three-dimensionally ordered macroporous Pt-loaded TiO2 photocatalyst (3DOM Pt/TiO2) has been successfully synthesized using a facile colloidal crystal-template method. The resultant composite combines several morphological/structural advantages, including uniform 3D ordered macroporous skeletons, high crystallinity, large porosity and an internal electric field formed at Pt/TiO2 interfaces. These unique features enable the 3DOM Pt/TiO2 to possess a large surface for photocatalytic reactions and fast diffusion for mass transfer of reactants as well as efficient suppression of recombination for photogenerated electron-hole pairs in TiO2. Thus, the 3DOM Pt/TiO2 exhibits significantly enhanced photocatalytic activity. Typically, 88% of RhB can be degraded over the 3DOM Pt/TiO2 photocatalyst under visible light irradiation (λ ≥ 420 nm) within 100 min, much higher than that of the commercial TiO2 nanoparticles (only 37%). The underlying mechanism for the enhanced photocatalytic activity of 3DOM Pt/TiO2 has been further analyzed based on energy band theory and ascribed to the formation of Schottky-type Pt/TiO2 junctions. The proposed method herein can provide new references for further improving the photocatalytic efficiency of other photocatalysts via rational structural/morphological engineering. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst12060778 |