Ketone body therapy with D/L-β-hydroxybutyric acid solution in severe MADD
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a severe inborn disorder of mitochondrial fatty acid oxidation. The only treatment option for MADD is the use of exogenous ketone bodies, like sodium β-hydroxybutyrate (NaβHB). However, the use of ketone body salts leads to a high intake of accomp...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and metabolism reports 2019-09, Vol.20, p.100491-100491, Article 100491 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple acyl-CoA dehydrogenase deficiency (MADD) is a severe inborn disorder of mitochondrial fatty acid oxidation. The only treatment option for MADD is the use of exogenous ketone bodies, like sodium β-hydroxybutyrate (NaβHB). However, the use of ketone body salts leads to a high intake of accompanying minerals, which can lead to additional side effects. The use of mineral-free formulations could improve tolerability.
In this report, the use of a βHB acid (βHBA) in a patient with MADD is described. The production of D/L-βHBA was carried out using ion exchange chromatography (IEX) and using a precipitation method. During two inpatient treatment intervals, the tolerability as well as clinical and metabolic effects were monitored. D-βHB in serum, blood gas analysis, and standard blood measurements (like minerals) were used as control parameters.
Production of D/L-βHBA using the precipitation method was more effective than using IEX. The tube feed solution used had a minimum pH of 3.5. Capillary D-βHB measurements were between 0.1 and 0.4 mmol/L and venous were at 0.1 mmol/L or below. Minerals and serum pH were within the normal range. During application of D/L-βHBA, gastrointestinal discomfort occurred and no clinical improvement was observed.
The use of D/L-βHBA in the therapy of severe MADD could be a good addition to the use of classical ketone body salts. The observed gastrointestinal side effects were of a mild nature and could not be specifically attributed to the D/L-βHBA treatment. In short-term application, no clinical benefit and no substantial increase of D-βHB in serum were noted. No tendency towards acidosis or alkalosis was observed during the entire period of treatment. |
---|---|
ISSN: | 2214-4269 2214-4269 |
DOI: | 10.1016/j.ymgmr.2019.100491 |