Modern coral range expansion off southeast Florida falls short of Late Holocene baseline

As thermal stress and disease outbreaks decimate coral reefs throughout the tropics, there is growing evidence that higher latitude marine environments may provide crucial refuges for many at-risk, temperature-sensitive coral species. However, our understanding of how coral populations expand into n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications earth & environment 2024-12, Vol.5 (1), p.119-12, Article 119
Hauptverfasser: Modys, Alexander B., Oleinik, Anton E., Toth, Lauren T., Precht, William F., Mortlock, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As thermal stress and disease outbreaks decimate coral reefs throughout the tropics, there is growing evidence that higher latitude marine environments may provide crucial refuges for many at-risk, temperature-sensitive coral species. However, our understanding of how coral populations expand into new areas and sustain themselves over time is constrained by the limited scope of modern observations. Here, we provide geological insights into coral range expansions by reconstructing the composition of a Late Holocene-aged subfossil coral death assemblage on the southeast Florida reef tract and comparing it to modern reefs throughout the region. Our findings show that the Late Holocene coral assemblages were dominated by now critically endangered Acropora species between ~3500 and 1800 years before present, mirroring classic zonation patterns characteristic of healthy pre-1970s Caribbean reefs. In contrast, the modern reefs off southeast Florida are becoming increasingly dominated by stress-tolerant species like Porites astreoides and Siderastrea siderea despite modest expansions of Acropora cervicornis over the past several decades. Our results suggest that ongoing anthropogenic stressors, not present during the Late Holocene, are likely limiting the ability of modern higher latitude reefs in Florida to function as long-term climate refugia.
ISSN:2662-4435
2662-4435
DOI:10.1038/s43247-024-01283-0