Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis in vitro and in vivo

A current challenge of synthetic bone graft substitute design is to induce bone formation at a similar rate to its biological resorption, matching bone's intrinsic osteoinductivity and capacity for remodelling. We hypothesise that both osteoinduction and resorption can be achieved by altering s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Cells and Materials 2014-04, Vol.27, p.281-297
Hauptverfasser: Davison, N L, Luo, X, Schoenmaker, T, Everts, V, Yuan, H, Barrère-de Groot, F, de Bruijn, J D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A current challenge of synthetic bone graft substitute design is to induce bone formation at a similar rate to its biological resorption, matching bone's intrinsic osteoinductivity and capacity for remodelling. We hypothesise that both osteoinduction and resorption can be achieved by altering surface microstructure of beta-tricalcium phosphate (TCP). To test this, two TCP ceramics are engineered with equivalent chemistry and macrostructure but with either submicron- or micron-scale surface architecture. In vitro, submicron-scale surface architecture differentiates larger, more active osteoclasts--a cell type shown to be important for both TCP resorption and osteogenesis--and enhances their secretion of osteogenic factors to induce osteoblast differentiation of human mesenchymal stem cells. In an intramuscular model, submicrostructured TCP forms 20 % bone in the free space, is resorbed by 24 %, and is densely populated by multinucleated osteoclast-like cells after 12 weeks; however, TCP with micron-scale surface architecture forms no bone, is essentially not resorbed, and contains scarce osteoclast-like cells. Thus, a novel submicron-structured TCP induces substantial bone formation and is resorbed at an equivalent rate, potentially through the control of osteoclast-like cells.
ISSN:1473-2262
DOI:10.22203/ecm.v027a20