Workflow Scheduling in Cloud Environment Using Firefly Optimization Algorithm

One of the issues in cloud computing is workflow scheduling. A workflow models the process of executing an application comprising a set of steps and its objective is to simplify the complexity of application management. Workflow scheduling maps each task to a proper resource and sorts tasks on each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOIV : international journal on informatics visualization Online 2019-08, Vol.3 (3), p.237-242
Hauptverfasser: Ghasemi, Shahin, Kheyrolahi, Asra, Abdulla Shaltooki, Abdusalam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the issues in cloud computing is workflow scheduling. A workflow models the process of executing an application comprising a set of steps and its objective is to simplify the complexity of application management. Workflow scheduling maps each task to a proper resource and sorts tasks on each resource to meet some efficiency measures such as processing and transmission costs, load balancing, quality of service, and etc. Task scheduling is an NP-Complete problem. In this study, meta-heuristic firefly algorithm (FA) is used to present a workflow scheduling algorithm. The purpose of the proposed scheduling algorithm is to explore optimal schedules such that the cost of processing and transmission of the whole workflow are minimized while there will be load balancing among the processing stations. The proposed algorithm is implemented in MATLAB and its efficiency is compared with cat swarm optimization (CSO) algorithm. The evaluations show that the proposed algorithm outperforms CSO in finding better solutions.
ISSN:2549-9610
2549-9904
DOI:10.30630/joiv.3.3.266