A Differential Confocal Sensor for Simultaneous Position and Slope Acquisitions Based on a Zero-Crossing Prediction Algorithm

A new sensor type is proposed to accurately detect the surface profiles of three-dimensional (3D) free-form surfaces. This sensor is based on the single-exposure, zero-crossing method and is used to measure position and angle simultaneously. First, the field intensity distribution in the posterior f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-01, Vol.23 (3), p.1453
Hauptverfasser: Wang, Tingyu, Wang, Zhiyi, Yang, Yongqiang, Mi, Xiaotao, Ti, Yunzan, Wang, Jianli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new sensor type is proposed to accurately detect the surface profiles of three-dimensional (3D) free-form surfaces. This sensor is based on the single-exposure, zero-crossing method and is used to measure position and angle simultaneously. First, the field intensity distribution in the posterior focal plane of the confocal microscope's objective was modeled accurately. Second, because the camera needs to trigger acquisition when the surface (to be measured) reaches the focal position of the sensor, a zero-crossing prediction method based on a sliding window was proposed. Third, a fast, spatially convergent, peak-extraction algorithm was proposed to improve the accuracy and efficiency of peak extraction. This scheme reduces system installation and adjustment difficulties, and the single-exposure, zero-crossing method achieves high-speed, real-time image acquisitions. The experimental results indicate that the average error of the zero-crossing prediction system was 17.63 nm, the average error of the tilt degree measurement was 0.011° in the range of 0-8°, and the prediction error of the tilt direction measurement was 0.089° in the range of 0-360°. The sensor can measure the slope and can be potentially used for 3D surface precision detection.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23031453