Intrareticular charge transfer regulated electrochemiluminescence of donor–acceptor covalent organic frameworks

The control of charge transfer between radical anions and cations is a promising way for decoding the emission mechanism in electrochemiluminescence (ECL) systems. Herein, a type of donor-acceptor (D-A) covalent organic framework (COF) with triphenylamine and triazine units is designed as a highly e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-11, Vol.12 (1), p.6808-6808, Article 6808
Hauptverfasser: Luo, Rengan, Lv, Haifeng, Liao, Qiaobo, Wang, Ningning, Yang, Jiarui, Li, Yang, Xi, Kai, Wu, Xiaojun, Ju, Huangxian, Lei, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The control of charge transfer between radical anions and cations is a promising way for decoding the emission mechanism in electrochemiluminescence (ECL) systems. Herein, a type of donor-acceptor (D-A) covalent organic framework (COF) with triphenylamine and triazine units is designed as a highly efficient ECL emitter with tunable intrareticular charge transfer (IRCT). The D-A COF demonstrates 123 folds enhancement in ECL intensity compared with its benzene-based COF with small D-A contrast. Further, the COF’s crystallinity- and protonation-modulated ECL behaviors confirm ECL dependence on intrareticular charge transfer between donor and acceptor units, which is rationalized by density functional theory. Significantly, dual-peaked ECL patterns of COFs are achieved through an IRCT mediated competitive oxidation mechanism: the coreactant-mediated oxidation at lower potential and the direct oxidation at higher potential. This work provides a new fundamental and approach to improve the ECL efficiency for designing next-generation ECL devices. Controlling the charge transfer between radical anions and cations is a promising way to tune the emission mechanism in electrochemiluminescence (ECL) systems. Here, the authors report a donor-acceptor based covalent organic framework, using triphenylamine and triazine building units, and demonstrate efficient ECL based on an adjustable intrareticular charge transfer.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27127-5