The Protective Effect of Heme Oxygenase-1 on Liver Injury Caused by DON-Induced Oxidative Stress and Cytotoxicity

Deoxynivalenol (DON) is a kind of Fusarium toxin that can cause a variety of toxic effects. Oxidative stress and DNA damage play a critical role in the toxicity of DON. However, previous studies focused more on acute toxicity in vivo/vitro models and lacked subchronic toxicity study in vivo. The pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxins 2021-10, Vol.13 (10), p.732
Hauptverfasser: Meng, Zitong, Wang, Liangliang, Liao, Yuxiao, Peng, Zhao, Li, Dan, Zhou, Xiaolei, Liu, Shuang, Li, Yanmei, Nüssler, Andreas K, Liu, Liegang, Hao, Liping, Yang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deoxynivalenol (DON) is a kind of Fusarium toxin that can cause a variety of toxic effects. Oxidative stress and DNA damage play a critical role in the toxicity of DON. However, previous studies focused more on acute toxicity in vivo/vitro models and lacked subchronic toxicity study in vivo. The potentially harmful effect of DON given at doses comparable to the daily human consumption in target organs, especially the liver, which is the main detoxification organ of DON, is also still not fully understood. Otherwise, Heme Oxygenase-1 (HO-1) has also reduced cell damage under the DON condition according to our previous study. Therefore, we used a rodent model that mimicked daily human exposure to DON and further explored its mechanism of toxic effects on liver tissue and Hepa 1-6 cell line. We also used adeno-associated virus (AAV)-modified HO-1 expressing by tail vein injection and constructed lentivirus-Hepa 1-6 cell line for mimicking HO-1 protective ability under the DON condition. The main results showed that both 30 d and 90 d exposures of DON could cause low-grade inflammatory infiltration around hepatic centrilobular veins. The reactive oxygen species (ROS) and 8-hydroxy-2 deoxyguanosine (8-OHdG) increased during DON exposure, indicating oxidation stress and DNA damage. Significantly, AAV-mediated liver-specific overexpression of HO-1 reduced DON-induced liver damage and indirectly protected the abilities of antioxidant enzyme/DNA damage repair system, while AAV-mediated silence of HO-1 produced the opposite effect. In addition, we found that overexpression of HO-1 could enhance autophagy and combined it with an antioxidant enzyme/DNA damage repair system to inhibit DON-induced hepatocyte damage. Altogether, these data suggest that HO-1 reduces the oxidative stress and DNA damage caused by DON sub-chronic exposure through maintaining DNA repair, antioxidant activity, as well as autophagy.
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins13100732