On Asymptotic Behavior of Solutions of Generalized Emden-Fowler Differential Equations with Delay Argument

The following differential equation u(n)(t)+p(t)|u(σ(t))|μ(t) sign u(σ(t))=0 is considered. Here p∈Lloc(R+;R+), μ∈C(R+;(0,+∞)), σ∈C(R+;R+), σ(t)≤t, and limt→+∞⁡σ(t)=+∞. We say that the equation is almost linear if the condition limt→+∞⁡μ(t)=1 is fulfilled, while if lim⁡supt→+∞⁡μ(t)≠1 or lim⁡inft→+∞⁡...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.180-192-118
Hauptverfasser: Domoshnitsky, Alexander I., Koplatadze, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The following differential equation u(n)(t)+p(t)|u(σ(t))|μ(t) sign u(σ(t))=0 is considered. Here p∈Lloc(R+;R+), μ∈C(R+;(0,+∞)), σ∈C(R+;R+), σ(t)≤t, and limt→+∞⁡σ(t)=+∞. We say that the equation is almost linear if the condition limt→+∞⁡μ(t)=1 is fulfilled, while if lim⁡supt→+∞⁡μ(t)≠1 or lim⁡inft→+∞⁡μ(t)≠1, then the equation is an essentially nonlinear differential equation. In the case of almost linear and essentially nonlinear differential equations with advanced argument, oscillatory properties have been extensively studied, but there are no results on delay equations of this sort. In this paper, new sufficient conditions implying Property A for delay Emden-Fowler equations are obtained.
ISSN:1085-3375
1687-0409
DOI:10.1155/2014/168425