UMAG-Net: A New Unsupervised Multiattention-Guided Network for Hyperspectral and Multispectral Image Fusion
To reconstruct images with high spatial resolution and high spectral resolution, one of the most common methods is to fuse a low-resolution hyperspectral image (HSI) with a high-resolution (HR) multispectral image (MSI) of the same scene. Deep learning has been widely applied in the field of HSI-MSI...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.7373-7385 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To reconstruct images with high spatial resolution and high spectral resolution, one of the most common methods is to fuse a low-resolution hyperspectral image (HSI) with a high-resolution (HR) multispectral image (MSI) of the same scene. Deep learning has been widely applied in the field of HSI-MSI fusion, which is limited with hardware. In order to break the limits, we construct an unsupervised multiattention-guided network named UMAG-Net without training data to better accomplish HSI-MSI fusion. UMAG-Net first extracts deep multiscale features of MSI by using a multiattention encoding network. Then, a loss function containing a pair of HSI and MSI is used to iteratively update parameters of UMAG-Net and learn prior knowledge of the fused image. Finally, a multiscale feature-guided network is constructed to generate an HR-HSI. The experimental results show the visual and quantitative superiority of the proposed method compared to other methods. |
---|---|
ISSN: | 1939-1404 2151-1535 |
DOI: | 10.1109/JSTARS.2021.3097178 |