A deformed IR: a new IR fixed point for four-dimensional holographic theories

A bstract In holography, the IR behavior of a quantum system at nonzero density is described by the near horizon geometry of an extremal charged black hole. It is commonly believed that for systems on S 3 , this near horizon geometry is AdS 2 × S 3 . We show that this is not the case: generic static...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-02, Vol.2023 (2), p.152-41, Article 152
Hauptverfasser: Horowitz, Gary T., Kolanowski, Maciej, Santos, Jorge E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract In holography, the IR behavior of a quantum system at nonzero density is described by the near horizon geometry of an extremal charged black hole. It is commonly believed that for systems on S 3 , this near horizon geometry is AdS 2 × S 3 . We show that this is not the case: generic static, nonspherical perturbations of AdS 2 × S 3 blow up at the horizon, showing that it is not a stable IR fixed point. We then construct a new near horizon geometry which is invariant under only SO(3) (and not SO(4)) symmetry and show that it is stable to SO(3)-preserving perturbations (but not in general). We also show that an open set of nonextremal, SO(3)-invariant charged black holes develop this new near horizon geometry in the limit T → 0. Our new IR geometry still has AdS 2 symmetry, but it is warped over a deformed sphere. We also construct many other near horizon geometries, including some with no rotational symmetries, but expect them all to be unstable IR fixed points.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2023)152