Tailoring a N-Doped Nanoporous Carbon Host for a Stable Lithium Metal Anode
Li metal is a promising anode candidate due to its high theoretical capacity and low electrochemical potential. However, dendrite formation and the resulting dead Li cause continuous Li consumption, which hinders its practical application. In this study, we realized N-doped nanoporous carbon for a s...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-11, Vol.13 (23), p.3007 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Li metal is a promising anode candidate due to its high theoretical capacity and low electrochemical potential. However, dendrite formation and the resulting dead Li cause continuous Li consumption, which hinders its practical application. In this study, we realized N-doped nanoporous carbon for a stable Li metal host composed only of lightweight elements C and N through the simple calcination of a nitrogen-containing metal-organic framework (MOF). During the calcination process, we effectively controlled the amount of lithophilic N and the electrical conductivity of the N-doped porous carbons to optimize their performance as Li metal hosts. As a result, the N-doped porous carbon exhibited excellent electrochemical performances, including 95.8% coulombic efficiency and 91% capacity retention after 150 cycles in a full cell with an LFP cathode. The N-doped nanoporous carbon developed in this study can realize a stable Li metal host without adding lithium ion metals and metal oxides, etc., which is expected to provide an efficient approach for reliable Li metal anodes in secondary battery applications. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13233007 |