On the class of uncertainty inequalities for the coupled fractional Fourier transform

The coupled fractional Fourier transform F α , β is a two-dimensional fractional Fourier transform depending on two angles α and β , which are coupled in such a way that the transform parameters are γ = ( α + β ) / 2 and δ = ( α − β ) / 2 . It generalizes the two-dimensional Fourier transform and se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2022-10, Vol.2022 (1), p.1-17, Article 133
Hauptverfasser: Shah, Firdous A., Lone, Waseem Z., Nisar, Kottakkaran Sooppy, Abdeljawad, Thabet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The coupled fractional Fourier transform F α , β is a two-dimensional fractional Fourier transform depending on two angles α and β , which are coupled in such a way that the transform parameters are γ = ( α + β ) / 2 and δ = ( α − β ) / 2 . It generalizes the two-dimensional Fourier transform and serves as a prominent tool in some applications of signal and image processing. In this article, we formulate a new class of uncertainty inequalities for the coupled fractional Fourier transform (CFrFT). Firstly, we establish a sharp Heisenberg-type uncertainty inequality for the CFrFT and then formulate some logarithmic and local-type uncertainty inequalities. In the sequel, we establish several concentration-based uncertainty inequalities, including Nazarov, Amrein–Berthier–Benedicks, and Donoho–Stark’s inequalities. Towards the end, we formulate Hardy’s and Beurling’s inequalities for the CFrFT.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-022-02873-2