Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network
The main purpose of this study to increase the optimal conditions for biogas yield from anaerobic digestion of agricultural waste (Rice Straw) using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). In the development of predictive models temperature, pH, substrate concentratio...
Gespeichert in:
Veröffentlicht in: | Alexandria engineering journal 2016-12, Vol.55 (4), p.3297-3307 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main purpose of this study to increase the optimal conditions for biogas yield from anaerobic digestion of agricultural waste (Rice Straw) using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). In the development of predictive models temperature, pH, substrate concentration and agitation time are conceived as model variables. The experimental results show that the liner model terms of temperature, substrate concentration and pH, agitation time have significance of interactive effects (p |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2016.08.010 |