Infection Structure-Specific Reductive Iron Assimilation Is Required for Cell Wall Integrity and Full Virulence of the Maize Pathogen Colletotrichum graminicola
Ferroxidases are essential components of the high-affinity reductive iron assimilation pathway in fungi. Two ferroxidase genes, FET3-1 and FET3-2, have been identified in the genome of the maize anthracnose fungus Colletotrichum graminicola. Complementation of growth defects of the ferroxidase-defic...
Gespeichert in:
Veröffentlicht in: | Molecular plant-microbe interactions 2013-06, Vol.26 (6), p.695-708 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ferroxidases are essential components of the high-affinity reductive iron assimilation pathway in fungi. Two ferroxidase genes, FET3-1 and FET3-2, have been identified in the genome of the maize anthracnose fungus Colletotrichum graminicola. Complementation of growth defects of the ferroxidase-deficient Saccharomyces cerevisiae strain Δfet3fet4 showed that both Fet3-1 and Fet3-2 of C. graminicola represent functional ferroxidases. Expression of enhanced green fluorescent protein fusions in yeast and C. graminicola indicated that both ferroxidase proteins localize to the plasma membrane. Transcript abundance of FET3-1 increased dramatically under iron-limiting conditions but those of FET3-2 were hardly detectable. Δfet3-1 and Δfet3-2 single as well as Δfet3-1/2 double-deletion strains were generated. Under iron-sufficient or deficient conditions, vegetative growth rates of these strains did not significantly differ from that of the wild type but Δfet3-1 and Δfet3-1/2 strains showed increased sensitivity to reactive oxygen species. Furthermore, under iron-limiting conditions, appressoria of Δfet3-1 and Δfet3-1/2 strains showed significantly reduced transcript abundance of a class V chitin synthase and exhibited severe cell wall defects. Infection assays on intact and wounded maize leaves, quantitative data of infection structure differentiation, and infection stage-specific expression of FET3-1 showed that reductive iron assimilation is required for appressorial penetration, biotrophic development, and full virulence. |
---|---|
ISSN: | 0894-0282 1943-7706 |
DOI: | 10.1094/MPMI-01-13-0003-R |