The two variable (φ'/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations

In this paper, we apply the two variable ([phi]'/[phi], 1/[phi])-expansion method to seek exact traveling wave solutions (solitary wave solutions, periodic function solutions, rational function solution) for time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2020-01, Vol.5 (5), p.4121-4135
Hauptverfasser: Zhao, Yunmei, He, Yinghui, Yang, Huizhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we apply the two variable ([phi]'/[phi], 1/[phi])-expansion method to seek exact traveling wave solutions (solitary wave solutions, periodic function solutions, rational function solution) for time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional Sharma-Tasso-Olver (FSTO) equation. The solutions are obtained in the form of hyperbolic, trigonometric and rational functions containing parameters. The results show that the two variable ([phi]'/[phi], 1/[phi])-expansion method is simple, effctivet, straightforward and is the generalization of the (G'/G)-expansion method. Keywords: the two variable ([phi]'/[phi], 1/[phi])-expansion method; nonlinear fractional differential equation; traveling wave solution Mathematics Subject Classification: 35C25, 35C07, 35C08, 35Q20 1
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2020264