The two variable (φ'/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations
In this paper, we apply the two variable ([phi]'/[phi], 1/[phi])-expansion method to seek exact traveling wave solutions (solitary wave solutions, periodic function solutions, rational function solution) for time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2020-01, Vol.5 (5), p.4121-4135 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we apply the two variable ([phi]'/[phi], 1/[phi])-expansion method to seek exact traveling wave solutions (solitary wave solutions, periodic function solutions, rational function solution) for time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional Sharma-Tasso-Olver (FSTO) equation. The solutions are obtained in the form of hyperbolic, trigonometric and rational functions containing parameters. The results show that the two variable ([phi]'/[phi], 1/[phi])-expansion method is simple, effctivet, straightforward and is the generalization of the (G'/G)-expansion method. Keywords: the two variable ([phi]'/[phi], 1/[phi])-expansion method; nonlinear fractional differential equation; traveling wave solution Mathematics Subject Classification: 35C25, 35C07, 35C08, 35Q20 1 |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2020264 |