Uniform spectral gap and orthogeodesic counting for strong convergence of Kleinian groups

We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds under strong limits. For a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the limit manifold and the exponentially mixing property of the geodesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2023-08, Vol.11, Article e68
Hauptverfasser: Liu, Beibei, Vargas Pallete, Franco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds under strong limits. For a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the limit manifold and the exponentially mixing property of the geodesic flow along the strongly convergent sequence to find asymptotically uniform counting formulas for the number of orthogeodesics between the convex sets. In particular, this provides asymptotically uniform counting formulas (with respect to length) for orthogeodesics between converging Margulis tubes, geodesic loops based at converging basepoints, and primitive closed geodesics.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2023.64