RB-GAT: A Text Classification Model Based on RoBERTa-BiGRU with Graph ATtention Network

With the development of deep learning, several graph neural network (GNN)-based approaches have been utilized for text classification. However, GNNs encounter challenges when capturing contextual text information within a document sequence. To address this, a novel text classification model, RB-GAT,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (11), p.3365
Hauptverfasser: Lv, Shaoqing, Dong, Jungang, Wang, Chichi, Wang, Xuanhong, Bao, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of deep learning, several graph neural network (GNN)-based approaches have been utilized for text classification. However, GNNs encounter challenges when capturing contextual text information within a document sequence. To address this, a novel text classification model, RB-GAT, is proposed by combining RoBERTa-BiGRU embedding and a multi-head Graph ATtention Network (GAT). First, the pre-trained RoBERTa model is exploited to learn word and text embeddings in different contexts. Second, the Bidirectional Gated Recurrent Unit (BiGRU) is employed to capture long-term dependencies and bidirectional sentence information from the text context. Next, the multi-head graph attention network is applied to analyze this information, which serves as a node feature for the document. Finally, the classification results are generated through a Softmax layer. Experimental results on five benchmark datasets demonstrate that our method can achieve an accuracy of 71.48%, 98.45%, 80.32%, 90.84%, and 95.67% on Ohsumed, R8, MR, 20NG and R52, respectively, which is superior to the existing nine text classification approaches.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24113365