Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity

Land-use has transformed ecosystems over three quarters of the terrestrial surface, with massive repercussions on biodiversity. Land-use intensity is known to contribute to the effects of land-use on biodiversity, but the magnitude of this contribution remains uncertain. Here, we use a modified coun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-02, Vol.13 (1), p.615-615, Article 615
Hauptverfasser: Semenchuk, Philipp, Plutzar, Christoph, Kastner, Thomas, Matej, Sarah, Bidoglio, Giorgio, Erb, Karl-Heinz, Essl, Franz, Haberl, Helmut, Wessely, Johannes, Krausmann, Fridolin, Dullinger, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land-use has transformed ecosystems over three quarters of the terrestrial surface, with massive repercussions on biodiversity. Land-use intensity is known to contribute to the effects of land-use on biodiversity, but the magnitude of this contribution remains uncertain. Here, we use a modified countryside species-area model to compute a global account of the impending biodiversity loss caused by current land-use patterns, explicitly addressing the role of land-use intensity based on two sets of intensity indicators. We find that land-use entails the loss of ~15% of terrestrial vertebrate species from the average 5 × 5 arcmin-landscape outside remaining wilderness areas and ~14% of their average native area-of-habitat, with a risk of global extinction for 556 individual species. Given the large fraction of global land currently used under low land-use intensity, we find its contribution to biodiversity loss to be substantial (~25%). While both sets of intensity indicators yield similar global average results, we find regional differences between them and discuss data gaps. Our results support calls for improved sustainable intensification strategies and demand-side actions to reduce trade-offs between food security and biodiversity conservation. Land use is a major driver of biodiversity loss, but disentangling the contribution of its various components is challenging. Here, the authors partition the role of land use type and intensity in explaining global patterns of impending species losses for terrestrial vertebrates.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-28245-4