AUTOMATIC EXTRACTION OF A NAVIGATION GRAPH INTENDED FOR INDOORGML FROM AN INDOOR POINT CLOUD

Indoor environments tend to be more complex and more populated when buildings are accessible to the public. The need for knowing where people are, how they can get somewhere or how to reach them in these buildings is thus equally increasing. In this research point clouds are used, obtained by dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS annals of the photogrammetry, remote sensing and spatial information sciences remote sensing and spatial information sciences, 2019-05, Vol.IV-2/W5, p.271-278
Hauptverfasser: Flikweert, P., Peters, R., Díaz-Vilariño, L., Voûte, R., Staats, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Indoor environments tend to be more complex and more populated when buildings are accessible to the public. The need for knowing where people are, how they can get somewhere or how to reach them in these buildings is thus equally increasing. In this research point clouds are used, obtained by dynamic laser scanning of a building, since we cannot rely on architectural drawings for maps and paths, which can be outdated. The presented method focuses on the creation of an indoor navigation graph, based on IndoorGML structure, in a fast and automated way, while retaining the type of walkable surface. In this paper the focus has been on door detection, because doors are essential elements in an indoor environment, seeing that they connect spaces and are a logical step in a route. This paper describes a way to detect doors using 3D Medial Axis Transform (MAT) combined with the intelligence stored in the path of a mobile laser scanner, showing good first results. Additionally different spaces (e.g. rooms and corridors) in the building are identified and slopes and stairs in walkable spaces are detected. This results in a navigation graph which can be stored in an IndoorGML structure.
ISSN:2194-9050
2194-9042
2194-9050
DOI:10.5194/isprs-annals-IV-2-W5-271-2019