Signal Propagation in Electromagnetic Media Modelled by the Two-Sided Fractional Derivative

In this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2021-01, Vol.5 (1), p.10
Hauptverfasser: Gulgowski, Jacek, Kwiatkowski, Dariusz, Stefański, Tomasz P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no obvious relation between causality of the derivative and causality of the transfer function induced by this derivative. Hence, causality of the system is investigated; its output is an electromagnetic signal propagating in media described by the time-domain two-sided fractional derivative. It is demonstrated that, for the derivative order in the range [1,+∞), the transfer function describing attenuated signal propagation is not causal for any value of the asymmetry parameter of the derivative. On the other hand, it is shown that, for derivative orders in the range (0,1), the transfer function is causal if and only if the asymmetry parameter is equal to certain specific values corresponding to the left-sided Grünwald–Letnikov derivative. The results are illustrated by numerical simulations and analyses. Some comments on the Kramers–Krönig relations for logarithm of the transfer function are presented as well.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract5010010