Automatic Speech Recognition Method Based on Deep Learning Approaches for Uzbek Language

Communication has been an important aspect of human life, civilization, and globalization for thousands of years. Biometric analysis, education, security, healthcare, and smart cities are only a few examples of speech recognition applications. Most studies have mainly concentrated on English, Spanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (10), p.3683
Hauptverfasser: Mukhamadiyev, Abdinabi, Khujayarov, Ilyos, Djuraev, Oybek, Cho, Jinsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Communication has been an important aspect of human life, civilization, and globalization for thousands of years. Biometric analysis, education, security, healthcare, and smart cities are only a few examples of speech recognition applications. Most studies have mainly concentrated on English, Spanish, Japanese, or Chinese, disregarding other low-resource languages, such as Uzbek, leaving their analysis open. In this paper, we propose an End-To-End Deep Neural Network-Hidden Markov Model speech recognition model and a hybrid Connectionist Temporal Classification (CTC)-attention network for the Uzbek language and its dialects. The proposed approach reduces training time and improves speech recognition accuracy by effectively using CTC objective function in attention model training. We evaluated the linguistic and lay-native speaker performances on the Uzbek language dataset, which was collected as a part of this study. Experimental results show that the proposed model achieved a word error rate of 14.3% using 207 h of recordings as an Uzbek language training dataset.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22103683