Evaluation method for the hyperspectral image camouflage effect based on multifeature description and grayscale clustering

Hyperspectral images have a special attribute with both spectral and spatial information, which is of great significance for the evaluation of the stealth performance of camouflaged targets. Aiming at the problems of a single evaluation index and the low credibility of traditional optical camouflage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing 2023-01, Vol.2023 (1), p.11-16, Article 11
Hauptverfasser: He, Zhenxin, Gan, Yuanying, Ma, Shixin, Liu, Chuntong, Liu, Zhongye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral images have a special attribute with both spectral and spatial information, which is of great significance for the evaluation of the stealth performance of camouflaged targets. Aiming at the problems of a single evaluation index and the low credibility of traditional optical camouflage evaluation methods, this paper proposes a grayscale clustering camouflage effect evaluation method based on multifeature descriptions of hyperspectral images using similarity indicators that reflect different spectral characteristics of the target and background. From the perspective of spectrum and human visual contrast, a comprehensive evaluation index system including spectral distance feature, spectral derivative feature, curve shape feature and spatial texture feature is constructed by combining spatial–spectral multi-feature constraints. At the same time, an improved Delphi method is proposed to simulate the expert decision-making process, and better evaluation weights are obtained by comparison and screening. The comprehensive evaluation of camouflage effect based on whitening function gray clustering is realized. The proposed method can not only give the “excellent” and “bad” of camouflage effect qualitatively, but also calculate the comprehensive score of camouflage effect by model.
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1186/s13634-023-00971-x