Biomass partitioning of plants under soil pollution stress

Polluted sites are ubiquitous worldwide but how plant partition their biomass between different organs in this context is unclear. Here, we identified three possible drivers of biomass partitioning in our controlled study along pollution gradients: plant size reduction (pollution effect) combined wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2022-04, Vol.5 (1), p.365-365, Article 365
Hauptverfasser: Delerue, Florian, Scattolin, Mathieu, Atteia, Olivier, Cohen, Gregory J. V., Franceschi, Michel, Mench, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polluted sites are ubiquitous worldwide but how plant partition their biomass between different organs in this context is unclear. Here, we identified three possible drivers of biomass partitioning in our controlled study along pollution gradients: plant size reduction (pollution effect) combined with allometric scaling between organs; early deficit in root surfaces (pollution effect) inducing a decreased water uptake; increased biomass allocation to roots to compensate for lower soil resource acquisition consistent with the optimal partitioning theory (plant response). A complementary meta-analysis showed variation in biomass partitioning across published studies, with grass and woody species having distinct modifications of their root: shoot ratio. However, the modelling of biomass partitioning drivers showed that single harvest experiments performed in previous studies prevent identifying the main drivers at stake. The proposed distinction between pollution effects and plant response will help to improve our knowledge of plant allocation strategies in the context of pollution. An empirical study with different levels of soil pollution and a meta-analysis provide insight into the drivers of plant biomass partitioning under soil pollution stress.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-022-03307-x