Identifying the operational status of container terminals from high-resolution nighttime-light satellite image for global supply chain network optimization

Container terminals are cargo gateways in the global maritime supply chain network. Major container terminals generally operate throughout the year, but do not operate at night, when container vessels are not calling at ports, or when there is no need to handle containers. Terminal congestion can de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in remote sensing 2023-07, Vol.4
Hauptverfasser: Murata, Hiroki, Shibasaki, Ryuichi, Imura, Naoto, Nishinari, Katsuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Container terminals are cargo gateways in the global maritime supply chain network. Major container terminals generally operate throughout the year, but do not operate at night, when container vessels are not calling at ports, or when there is no need to handle containers. Terminal congestion can delay containers’ shipping schedules, which impacts the supply chain network. To optimize global logistics, it is therefore important to understand fully the daily operational status of container terminals. A vessels’ automatic identification system data are not sufficient to determine whether containers are being handled in container terminals at night. Remote sensing, especially nighttime-light (NTL) imagery, might solve this problem. Recently, high-resolution images for the CE-SAT-IIB satellite with a pixel resolution of 5.1 m became available to observe NTL. This study assessed the operational status of container terminals based on satellite image taken at night. Eight terminals in the Port of Tokyo, Japan, were selected for the study. A Sentinel-2A image recorded during the day on 7 April 2021, and a CE-SAT-IIB image recorded during the night on 6 April 2021, were obtained. The digital numbers (DNs) of each red-, green-, and blue-(RGB) band image were analyzed, revealing that the red, green, and blue bands, in that order, had higher DNs in the Sentinel-2A daytime image and the CE-SAT-IIB NTL image at all terminals. One of the eight terminals had a low DN in the CE-SAT-IIB RGB image because its lights were off at the time the image was taken. The operational status of the terminals could be verified from the CE-SAT-IIB image by setting the DN threshold to the green or red bands. We also found that the CE-SAT-IIB image could distinguish white-light-emitting diode (LED) lamps from high-pressure sodium lamps based on color differences in the DNs of the RGB bands. If high-resolution NTL sensors were placed onboard microsatellites, a high-frequency observation constellation network could be constructed using a combination of NTL data and daytime images. This study showed the benefits and usefulness of NTL images of ports; the results will contribute to the overall optimization of the global maritime supply chain network.
ISSN:2673-6187
2673-6187
DOI:10.3389/frsen.2023.1229745