Investigation of DNA Hybridization on Nano-Structured Plasmonic Surfaces for Identifying Nasopharyngeal Viruses

Recently, studies have revealed that human herpesvirus 4 (HHV-4), also known as the Epstein–Barr virus, might be associated with the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared to SARS-CoV-2 infection alone, patients coinfected with SARS-CoV-2 and HHV-4 had hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) 2023-10, Vol.10 (10), p.1189
Hauptverfasser: Li, Shao-Sian, Lu, Yi-Jung, Chang, Ray, Tsai, Ming-Han, Hung, Jo-Ning, Chen, Wei-Hung, Fan, Yu-Jui, Wei, Pei-Kuen, Sheen, Horn-Jiunn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, studies have revealed that human herpesvirus 4 (HHV-4), also known as the Epstein–Barr virus, might be associated with the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared to SARS-CoV-2 infection alone, patients coinfected with SARS-CoV-2 and HHV-4 had higher risks of fever, inflammation, and even death, thus, confirming that HHV-4/SARS-CoV-2 coinfection in patients could benefit from clinical investigation. Although several intelligent devices can simultaneously discern multiple genes related to SARS-CoV-2, most operate via label-based detection, which restricts them from directly measuring the product. In this study, we developed a device that can replicate and detect SARS-CoV-2 and HHV-4 DNA. This device can conduct a duplex polymerase chain reaction (PCR) in a microfluidic channel and detect replicates in a non-labeled manner through a plasmonic-based sensor. Compared to traditional instruments, this device can reduce the required PCR time by 55% while yielding a similar amount of amplicon. Moreover, our device’s limit of detection (LOD) reached 100 fg/mL, while prior non-labeled sensors for SARS-CoV-2 detection were in the range of ng/mL to pg/mL. Furthermore, the device can detect desired genes by extracting cells artificially infected with HHV-4/SARS-CoV-2. We expect that this device will be able to help verify HHV-4/SARS-CoV-2 coinfected patients and assist in the evaluation of practical treatment approaches.
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering10101189