KRAS Affects Adipogenic Differentiation by Regulating Autophagy and MAPK Activation in 3T3-L1 and C2C12 Cells

Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-12, Vol.22 (24), p.13630, Article 13630
Hauptverfasser: Yu, Wenjie, Chen, Cheng-Zhen, Peng, Yanxia, Li, Ze, Gao, Yan, Liang, Shuang, Yuan, Bao, Kim, Nam-Hyung, Jiang, Hao, Zhang, Jia-Bao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor gamma (PPAR gamma), CCAAT/enhancer binding protein beta (C/ebp-beta), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms222413630