A Floquet engineering approach to optimize Schottky junction-based surface plasmonic waveguides

The ability to finely control the surface plasmon polariton (SPP) modes of plasmonic waveguides unveils many potential applications in nanophotonics. This work presents a comprehensive theoretical framework for predicting the propagation characteristics of SPP modes at a Schottky junction exposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-07, Vol.13 (1), p.10692-10692, Article 10692
Hauptverfasser: Herath, Kosala, Gunapala, Sarath D., Premaratne, Malin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to finely control the surface plasmon polariton (SPP) modes of plasmonic waveguides unveils many potential applications in nanophotonics. This work presents a comprehensive theoretical framework for predicting the propagation characteristics of SPP modes at a Schottky junction exposed to a dressing electromagnetic field. Applying the general linear response theory towards a periodically driven many-body quantum system, we obtain an explicit expression for the dielectric function of the dressed metal. Our study demonstrates that the dressing field can be used to alter and fine-tune the electron damping factor. By doing so, the SPP propagation length could be controlled and enhanced by appropriately selecting the intensity, frequency and polarization type of the external dressing field. Consequently, the developed theory reveals an unexplored mechanism for enhancing the SPP propagation length without altering other SPP characteristics. The proposed improvements are compatible with existing SPP-based waveguiding technologies and could lead to breakthroughs in the design and fabrication of state-of-the-art nanoscale integrated circuits and devices in the near future.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-37801-x