Assessing Agricultural Impact on Greenhouse Gases in the European Union: A Climate-Smart Agriculture Perspective

With the increasing concern about climate change and its impacts on agriculture, understanding the dynamics of greenhouse gas (GHG) emissions in the European Union (EU) agricultural sector is essential for devising effective mitigation strategies. This study aims to assess the impact of agriculture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2024-04, Vol.14 (4), p.821
1. Verfasser: Vărzaru, Anca Antoaneta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasing concern about climate change and its impacts on agriculture, understanding the dynamics of greenhouse gas (GHG) emissions in the European Union (EU) agricultural sector is essential for devising effective mitigation strategies. This study aims to assess the impact of agriculture on GHG within the EU and to examine how climate-smart agricultural practices can affect these emissions. The research investigates the complex relationship between agricultural activities and GHG emissions within the European Union during the period of 2017–2022 using structural equation modeling based on data from Eurostat and the European Commission. Furthermore, the study examines the influence of the digital economy on labor productivity in agriculture, recognizing the pivotal role of digital technologies in fostering climate-smart agricultural practices. The findings unveil significant positive influences encompassing the digital economy, agricultural productivity, agricultural output, and GHG emissions, underscoring the imperative of integrating climate-smart methodologies into agricultural frameworks. However, the influence of digital technologies is not significant as a result of opposing forces. Digital technologies exert positive indirect influences by increasing agricultural productivity and agricultural output, while they have negative influences by improving production processes through automation and precision agriculture. Digitalization and climate-smart agricultural practices have a significant potential to improve the efficiency and sustainability of the agricultural sector, contributing to food security and environmental protection by reducing GHG emissions. This study highlights the EU’s potential to achieve its environmental objectives through the reduction of GHG emissions and the enhancement of resilience within the agricultural sector, emphasizing the necessity of adopting climate-smart strategies.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy14040821