Pygpc: A sensitivity and uncertainty analysis toolbox for Python

We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their leg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SoftwareX 2020-01, Vol.11, p.100450, Article 100450
Hauptverfasser: Weise, Konstantin, Poßner, Lucas, Müller, Erik, Gast, Richard, Knösche, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient-based sensitivity measures and Sobol indices to reveal the relative importance of model parameters.
ISSN:2352-7110
2352-7110
DOI:10.1016/j.softx.2020.100450