A Review on Conventional and Advanced Methods for Nanotoxicology Evaluation of Engineered Nanomaterials

Nanotechnology can be defined as the field of science and technology that studies material at nanoscale (1-100 nm). These nanomaterials, especially carbon nanostructure-based composites and biopolymer-based nanocomposites, exhibit excellent chemical, physical, mechanical, electrical, and many other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-10, Vol.26 (21), p.6536
Hauptverfasser: Leudjo Taka, Anny, Tata, Charlotte Mungho, Klink, Michael John, Mbianda, Xavier Yangkou, Mtunzi, Fanyana Moses, Naidoo, Eliazer Bobby
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanotechnology can be defined as the field of science and technology that studies material at nanoscale (1-100 nm). These nanomaterials, especially carbon nanostructure-based composites and biopolymer-based nanocomposites, exhibit excellent chemical, physical, mechanical, electrical, and many other properties beneficial for their application in many consumer products (e.g., industrial, food, pharmaceutical, and medical). The current literature reports that the increased exposure of humans to nanomaterials could toxicologically affect their environment. Hence, this paper aims to present a review on the possible nanotoxicology assays that can be used to evaluate the toxicity of engineered nanomaterials. The different ways humans are exposed to nanomaterials are discussed, and the recent toxicity evaluation approaches of these nanomaterials are critically assessed.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26216536