Interpretability Analysis of Convolutional Neural Networks for Crack Detection

Crack detection is an important task in bridge health monitoring, and related detection methods have gradually shifted from traditional manual methods to intelligent approaches with convolutional neural networks (CNNs) in recent years. Due to the opaque process of training and operating CNNs, if the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2023-12, Vol.13 (12), p.3095
Hauptverfasser: Wu, Jie, He, Yongjin, Xu, Chengyu, Jia, Xiaoping, Huang, Yule, Chen, Qianru, Huang, Chuyue, Dadras Eslamlou, Armin, Huang, Shiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crack detection is an important task in bridge health monitoring, and related detection methods have gradually shifted from traditional manual methods to intelligent approaches with convolutional neural networks (CNNs) in recent years. Due to the opaque process of training and operating CNNs, if the learned features for identifying cracks in the network are not evaluated, it may lead to safety risks. In this study, to evaluate the recognition basis of different crack detection networks; several crack detection CNNs are trained using the same training conditions. Afterwards, several crack images are used to construct a dataset, which are used to interpret and analyze the trained networks and obtain the learned features for identifying cracks. Additionally, a crack identification performance criterion based on interpretability analysis is proposed. Finally, a training framework is introduced based on the issues reflected in the interpretability analysis.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings13123095