Protective Effects of Crotonis Semen Extract against Sepsis through NF-κB Pathway Inhibition

Sepsis is an inflammatory condition causing organ failure due to an uncontrolled immune response to infection and remains a significant challenge. Crotonis Semen has displayed various pharmacological effects, yet its potential in protecting against sepsis and the mechanisms involved remains largely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-09, Vol.25 (18), p.10089
Hauptverfasser: Hwang, Yo Sep, Yoon, Hyang Ran, Park, Hyo-Min, Jang, Jun-Pil, Park, Jun Hong, Park, Seong-Hoon, Lim, Jong Seok, Cho, Hee Jun, Lee, Hee Gu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sepsis is an inflammatory condition causing organ failure due to an uncontrolled immune response to infection and remains a significant challenge. Crotonis Semen has displayed various pharmacological effects, yet its potential in protecting against sepsis and the mechanisms involved remains largely unclear. Here, we explored the antiseptic properties of Crotons Semen extract (CSE) in both LPS-stimulated J774 macrophages and mice subjected to sepsis through Cecal ligation and Puncture (CLP) or LPS induction. We found that CSE enhanced survival rates in mouse models with acute sepsis induced by CLP operation and LPS injection. Administering CSE also reduced levels of enzymes indicating organ damage, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK), in septic mice. Furthermore, CSE lowered the serum levels of inflammatory mediators and cytokines, such as NO, TNF-α, IL-1β, and IL-6, in septic mice. In LPS-stimulated J774 macrophages, CSE reduced the expression of pro-inflammatory proteins, including iNOS and COX-2. Moreover, CSE inhibited the phosphorylation of IκBα and IKK, key components of the NF-κB signaling pathway, thereby reducing inflammatory mediators and cytokines. These results demonstrate CSE's protective effects against sepsis through NF-κB pathway disruption, indicating its potential as a therapeutic option for acute inflammatory conditions.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms251810089