CRISPR-Based Programmable Nucleic Acid-Binding Protein Technology Can Specifically Detect Fatal Tropical Disease-Causing Pathogens
Diagnostic approaches capable of ultrasensitive pathogen detection from low-volume clinical samples, running without any sophisticated instrument and laboratory setup, are easily field-deployable, inexpensive, and rapid, and are considered ideal for monitoring disease progression and surveillance. H...
Gespeichert in:
Veröffentlicht in: | Journal of tropical medicine 2022-07, Vol.2022, p.5390685-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diagnostic approaches capable of ultrasensitive pathogen detection from low-volume clinical samples, running without any sophisticated instrument and laboratory setup, are easily field-deployable, inexpensive, and rapid, and are considered ideal for monitoring disease progression and surveillance. However, standard pathogen detection methods, including culture and microscopic observation, antibody-based serologic tests, and primarily polymerase chain reaction (PCR)-oriented nucleic acid screening techniques, have shortcomings that limit their widespread use in responding to outbreaks and regular diagnosis, especially in remote resource-limited settings (RLSs). Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based programmable technology has emerged to challenge the unmet criteria of conventional methods. It consists of CRISPR-associated proteins (Cas) capable of targeting virtually any specific RNA or DNA genome based on the guide RNA (gRNA) sequence. Furthermore, the discovery of programmable trans-cleavage Cas proteins like Cas12a and Cas13 that can collaterally damage reporter-containing single-stranded DNA or RNA upon formation of target Cas-gRNA complex has strengthened this technology with enhanced sensitivity. Current advances, including automated multiplexing, ultrasensitive single nucleotide polymorphism (SNP)-based screening, inexpensive paper-based lateral flow readouts, and ease of use in remote global settings, have attracted the scientific community to introduce this technology in nucleic acid-based precise detection of bacterial and viral pathogens at the point of care (POC). This review highlights CRISPR-Cas-based molecular technologies in diagnosing several tropical diseases, namely malaria, zika, chikungunya, human immunodeficiency virus and acquired immunodeficiency syndrome (HIV-AIDS), tuberculosis (TB), and rabies. |
---|---|
ISSN: | 1687-9686 1687-9694 |
DOI: | 10.1155/2022/5390685 |