Involvement of A13 dopaminergic neurons located in the zona incerta in nociceptive processing: a fiber photometry study

The roles of serotonergic and noradrenergic signaling in nociceptive processing in the central nervous system are well known. However, dopaminergic signaling is also relevant to various physical functions, including nociception. The zona incerta is a subthalamic nucleus in which the A13 dopaminergic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular brain 2020-04, Vol.13 (1), p.60-4, Article 60
Hauptverfasser: Moriya, Shunpei, Yamashita, Akira, Masukawa, Daiki, Setoyama, Honami, Hwang, Yunsu, Yamanaka, Akihiro, Kuwaki, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The roles of serotonergic and noradrenergic signaling in nociceptive processing in the central nervous system are well known. However, dopaminergic signaling is also relevant to various physical functions, including nociception. The zona incerta is a subthalamic nucleus in which the A13 dopaminergic cell group resides, but how this A13 group affects nociceptive processing remains unknown. Recently, we showed that acute nociceptive stimuli rapidly induce the activity of A10 (ventral tegmental area) dopamine neurons via fiber photometry. In this study, we measured the activity of A13 dopaminergic neurons in response to acute nociceptive stimuli using the same system. Adeno-associated viruses (AAV-CAG-FLEX-G-CaMP6 and AAV-CAG-FLEX-mCherry) were unilaterally injected into the A13 site in transgenic mice carrying a dopamine transporter promotor-regulated Cre recombinase transgene to specifically introduce G-CaMP6/mCherry into A13 dopaminergic cell bodies through site-specific infection. We measured G-CaMP6/mCherry fluorescence intensity in the A13 site to acute nociceptive stimuli (pinch stimulus and heat stimulus). These stimuli significantly induced a rapid increase in G-CaMP6 fluorescence intensity, but non-nociceptive control stimuli did not. In contrast, mCherry fluorescence intensity was not significantly changed by nociceptive stimuli or non-nociceptive stimuli. Our finding is the first report to measure the activity of A13 dopaminergic neurons to aversive stimuli. A13 dopaminergic neurons project to the periaqueductal gray and the central nucleus of the amygdala, which are both well known as key regions in nociceptive processing. Therefore, together with our A10 study, our results indicate that A13 dopaminergic neurons play important roles in nociceptive processing.
ISSN:1756-6606
1756-6606
DOI:10.1186/s13041-020-00600-w