Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology
Protein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a new approach is proposed to construct a PPI predictor training a support vector machine model through a mutual information filter-wrapper parallel feature selection algorithm and an iterative and hi...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics 2012-01, Vol.2012 (2012), p.1-23 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a new approach is proposed to construct a PPI predictor training a support vector machine model through a mutual information filter-wrapper parallel feature selection algorithm and an iterative and hierarchical clustering to select a relevance negative training set. By means of a selectedsuboptimum set of features, the constructed support vector machine model is able to classify PPIs with high accuracy in any positive and negative datasets. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2012/897289 |