A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern

Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) based detection systems have the potential to transform the landscape of COVID-19...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EBioMedicine 2022-03, Vol.77, p.103926, Article 103926
Hauptverfasser: Nguyen, Long T., Macaluso, Nicolas C., Pizzano, Brianna L.M., Cash, Melanie N., Spacek, Jan, Karasek, Jan, Miller, Megan R., Lednicky, John A., Dinglasan, Rhoel R., Salemi, Marco, Jain, Piyush K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) based detection systems have the potential to transform the landscape of COVID-19 diagnostics due to their programmability; however, most of these methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. Three Cas12b proteins from Alicyclobacillus acidoterrestris (AacCas12b), Alicyclobacillus acidiphilus (AapCas12b), and Brevibacillus sp. SYP-B805 (BrCas12b) were expressed and purified, and their thermostability was characterised by differential scanning fluorimetry, cis-, and trans-cleavage activities over a range of temperatures. The BrCas12b was then incorporated into a reverse transcription loop-mediated isothermal amplification (RT-LAMP)-based one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs). Here we describe a complete one-pot detection reaction using a thermostable Cas12b effector endonuclease from Brevibacillus sp. to overcome these challenges detecting and discriminating SARS-CoV-2 VOCs in clinical samples. CRISPR-SPADE was then applied for discriminating SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) and validated in 208 clinical samples. CRISPR-SPADE achieved 92·8% sensitivity, 99·4% specificity, and 96·7% accuracy within 10–30 min for discriminating the SARS-CoV-2 VOCs, in agreement with S gene sequencing, achieving a positive and negative predictive value of 99·1% and 95·1%, respectively. Interestingly, for samples with high viral load (Ct value ≤ 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, a lyophilised version of one-pot CRISPR-SPADE reagents was developed and combined with an in-house portable multiplexing device capable of interpreting two orthogonal fluorescence signals. This technology enables real-time monitoring of RT-LAMP-mediated amplification and CRISPR-based reactions at a fraction of the cost of a qPCR system. The thermostable Brevibacillus sp. Cas12b offers relaxed primer design for accurately detecting SARS-CoV-2 VOCs in a simple and robust one-pot assay. The lyophilised reagents and simple instrumentation further enable rapid deployable point-of-care diagnostics that can be
ISSN:2352-3964
2352-3964
DOI:10.1016/j.ebiom.2022.103926